Master Thesis

Exploring the Epiphany manycore architecture
for the Lattice Boltzmann algorithm

Sebastian Raase
18" November, 2014

Preface

« This thesis is a cooperation
between Volvo Penta AB and
\!‘- Hogskolan | Halmstad.

’ « Volvo Penta designs and
builds boat drive systems.

(source: www.sintef.no)

Motivation

* The Parallella system has been advertised on Kickstarter
as “A Supercomputer For Everyone” — and succeeded!

« Computational Fluid Dynamics (CFD) is the largest user
of high-performance computing in engineering. citation needed]

» Connecting those might provide interesting insights about
the architecture, and as far as | know, nobody did it before.

« (Of course, it might also have to do with me needing a master thesis to finish my degree,
HH having access to the Parallella systems, and Volvo Penta being interested in CFD...)

| will talk about:

Computational Fluid Dynamics

Lattice Boltzmann algorithm

Adapteva Epiphany and Parallella board
Implementation

Results

Conclusion

Computational Fluid Dynamics

uses numerical methods to analyze fluid flows
— both gases and liquids are fluids

widespread applications in aerodynamics, architecture,
automotive, chemistry, meteorology, navy, ...

computationally very intensive
— high-performance computing, parallelization, ...

focus on a single, particle-based algorithm
— Lattice Boltzmann

Lattice Boltzmann algorithm ()

based on Boltzmann equation, late 19t century:

of_ory ,of i
ot ot collision ot diffusion ot

external
f =1(x, v, t) describes the particle probability density in
phase space (i.e. at specific position, velocity and time)

collision term is particularly hard to solve

Particle distribution is only affected by collisions (particle-
particle interactions), diffusion (particle movement), and
external forces (environment), nothing else.

Lattice Boltzmann algorithm (Il)

phase space f(X, v, t) is discretized (lattice models)
— discrete positions, velocities and time (and angles)

named DmQn (m: dimensions, n: number of discrete velocities)
focus on two models:

o / at /

n]

D2Q9 (single node) D3Q19 (single node)

Adapteva Epiphany (I)

two-dimensional mesh network-on-chip =1/ -] |]
consisting of eCore processor nodes e | i
low power (16 cores @ 800 MHz < 1W) =+ = - ...
single shared, flat 32-bit address space
1 MiB address space per node, R I |
64x64 (=4096) nodes maximum
row |column local address I:nes}; étrllctu;é
bit 31 25 19 bit 0 (source: Ep. Arch. Ref.

mesh address format 8

Adapteva Epiphany (lI)

« eCores are 32-bit RISC processors
with IALU (integer) and FPU (float)
— single-precision FPU only

« only 32 KiB local memory per node,
divided into independent 8 KiB-banks

 timers allow counting of events,
allowing clock-cycle precise
runtime measurements

eCore 32 KiB
Reg. File local
IALU FPU memory
och DMA 2 timers
controller
mesh
controller

mesh node

Parallella-16 board

currently available “reference” platform for Epiphany arch
Xilinx Zyng (1 GHz, dual-core ARM Cortex-A9) as host
16-core Epiphany E16G3 chip connected using FPGA logic
32 MiB of (Epiphany-)external shared memory

Parallella-16 board
8 =8 Epiphany chip is marked red

2. Micro USB n AR
e . (source: www.parallella.org)

Implementation (I)

« D2Q9 and D3Q19 implementations completely separate

« each implementation consists of two applications

* host application:

single-threaded ARM Linux application running on the Zynq
loads eCores with code and starts them

reads lattice data (results) from shared memory

creates density/velocity grayscale images and GIF animations
writes lattice data and time measurements to ASCII files

11

Implementation (Il

« Epiphany application:

single-threaded, but running on
all active eCores simultaneously

works on a part of the lattice (block),
which is always kept in local memory

after iteration, result may be copied
to shared memory (= to the host)

only next-neighbor communication
(except for shared memory)

all cores run in lockstep, using barriers

AY

10

11

14

15

0 1

2

3

415

6

1

89

10

11

12 13

14

15

i’

P

blocking approaches

(bold: domain boundaries) i,

Results (1)

e very consistent results
» excellent scalability for the calculations (growing problem)

- calculation times (almost) independent of number of cores

- tiny 3% speed decrease” going from one to four active cores, but
no further speed decrease (next-neighbor communication only)

 linear scalability for transmitting lattice to host

- increased number of blocks (cores) — increased lattice size

(* 2D case, 24x24 blocksize, -03 optimization level)

13

Results (Il)

e good computational performance in 2D

- 2.8 MLU/s* per core (45 MLU/s @ 16 cores)

- in 2005, a single-core AMD Opteron was
measured at 7 MLU/s, but in double precision

 much less impressive for 3D case

- 0.34 MLU/s per core (5.4 MLU/s @ 16 cores)
- in 2012, a single Nvidia Tesla achieved 650 MLU/s...

e comparison numbers were done on much larger lattices...

(* MLU/s: millions of lattice node updates per second)

14

Results (Il

« very small local memory, split into 8 KiB code / 24 KiB lattice

- at most 682 (2D, ~26x26) or 323 (3D, ~7x6x7) nodes/core

- Dbulk-based optimization ineffective in 3D (too few bulk nodes),
but 2.2x speedup in 2D compared to naive approach
— more with large blocks

800

naive N '
700 ' pulk sess—

600
500
400
300
200
100

0

- maximum lattice size
384 KiB @ 16 cores

clock cycles (avg) / 1000

2D, 24x24,-03 3D, 7x6x7,-02 3D, 3x35x3, -02

comparing naive / bulk-optimized algorithm
15

Results (1V)

 very small bandwidth to shared memory 00 [ation

- measured 85 MiB/s .
(i.e. ~270 lattices/second @ 16-core)
- theoretical maximum is 600 MiB/s, or

200 MiB/s if non-optimal accesses®
— not enough to stream lattice each iteration

2500 r

2000

1500

clock cycles (avg) / 1000

1000

- no overlap possible between 500 |

calculation and transmission... i i

naive bulk

(* but further limited by computation / host copy comparison

(2D, 24x24 block size, 16 cores)

current FPGA logic) i

Conclusion

« computations show excellent scalability, fair performance,
and still room for optimization

» too small local memory, too little external bandwidth

— currently not suitable for Lattice Boltzmann algorithm

 However:
This work used the very first publicly available Epiphany chip.

17

o0
—

