
Exploring the Epiphany manycore architecture
for the Lattice Boltzmann algorithm

MASTER THESIS

Volvo Penta, Göteborg
and

IDE Department,
Högskolan i Halmstad

Name: Sebastian Raase
Program: Embedded and Intelligent Systems
Year: 2014
Supervisor Högskolan: Prof. Tomas Nordström
Supervisor Volvo: Lars Johansson

Declaration

I hereby certify that this thesis has been composed by me and is based on my own work,
unless stated otherwise. Material and ideas taken, directly or indirectly, from foreign
sources are noted as such.

This work has not been submitted for any other degree or diploma.

Halmstad, November 21, 2014

Acknowledgement

To my grandfather.

I would like to thank Prof. Tomas Nordström from Högskolan i Halmstad, who supported
me continuously throughout the thesis, took the time needed and always provided very
helpful feedback.

Also, I would like to thank Lars Johansson from Volvo Penta AB, without whom this
thesis would not have been possible, and Jonas Latt from the University of Geneva for the
immensely helpful discussions about the Lattice Boltzmann algorithm.

A special thanks goes to my family, who always stand by my side.

Finally, I thank all those people who suffered my frustrations and encouraged me.
You know who you are.

Thank you.

Contents

Abstract 1

1 Introduction 2
1.1 Research Question and Methodology . 3

2 Background 4
2.1 Computational Fluid Dynamics . 4

2.1.1 Fluids . 4
2.1.2 Test Case: lid cavity . 5

2.2 Lattice Boltzmann Method . 5
2.2.1 Lattice Models . 7
2.2.2 Boundary Conditions . 9

2.3 Adapteva Epiphany . 10
2.3.1 Parallella Board . 10
2.3.2 Mesh Architecture . 11
2.3.3 Processor Node . 13
2.3.4 Programming . 16

3 Implementation 17
3.1 Data Layout . 19
3.2 Algorithm . 20
3.3 Host Code . 20

4 Results 22
4.1 Computation . 23
4.2 Shared Memory Access . 28

5 Conclusion 32

6 Future Work 33

A Appendix 34
A.1 Build System . 34

A.2 Shared Header File . 35
A.3 Epiphany . 36
A.4 Host . 38

B References 39

Abstract

Computational fluid dynamics (CFD) plays an important role in many scientific applica-
tions, ranging from designing more effective boat engines or aircraft wings to predicting
tomorrow’s weather, but at the cost of requiring huge amounts of computing time. Also,
traditional algorithms suffer from scalability limitations, making them hard to parallelize
massively.

As a relatively new and promising method for computational fluid dynamics, the Lattice
Boltzmann algorithm tries to solve the scalability problems of conventional, but well-
tested algorithms in computational fluid dynamics. Through its inherently local structure,
it is well suited for parallel processing, and has been implemented on many different kinds
of parallel platforms.

Adapteva’s Epiphany platform is a modern, low-power manycore architecture, which is
designed to scale up to thousands of cores, and has even more ambitious plans for the
future. Hardware support for floating-point calculations makes it a possible choice in
scientific settings.

The goal of this thesis is to analyze the performance of the Lattice Boltzmann algorithm
on the Epiphany platform. This is done by implementing and testing the lid cavity test
case in two and three dimensions. In real applications, high performance on large lattices
with millions of nodes is very important. Although the tested Epiphany implementation
scales very good, the hardware does not provide adequate amounts of local memory and
external memory bandwidth, currently preventing widespread use in computational fluid
dynamics.

1

1 Introduction

Fluids are all around us, from the air we breathe to the water we drink. Additionally,
fluid mechanics play a key role in many different scientific and technical domains, being
used to decide the shapes of energy-efficient cars and airplanes, or propeller and turbine
blades. Understanding the behaviour of air in the athmosphere is important for both to-
day’s weather forecast and for building storm-resistant buildings, as is understanding the
behaviour of water in the ocean for predicting dangerous waves. Although the list of ap-
plications could be extended much further, fluid mechanics are far from being a solved
problem. In fact, one of the seven most fundamental yet unsolved Millennium Prize prob-
lems named by the Clay Mathematics Institute in 2000 revolves around the Navier-Stokes
equations[6], which describe the behaviour of Newtonian fluids1.

In Computational Fluid Dynamics (CFD), instead of trying to solve problems from fluid
dynamics, numerical methods are used to simulate them. These methods require huge
amounts of computation, making the choices of hardware platform and algorithm even
more important. The Lattice Boltzmann algorithm is a relatively new algorithm used in
CFD, and is especially well suited for parallelization. This algorithm has been studied
extensively on different architectures, e.g. by evaluating the single-core performance on
common off-the-shelf and specialized vector processors [27] or looking at cluster perfor-
mance [18]. However, many studies have been focused on GPUs [16][25][11], or com-
pared GPU and cluster performance [21]. So far, there has been little work on manycore
architectures, although early results on Intel’s Xeon Phi have been reported [7].

1Newtonian fluids are characterized by a stress-independent viscosity.
Many common fluids, e.g. water and air, are commonly approximated as being Newtonian.

2

1.1 Research Question and Methodology

The central question of this thesis is the suitability of Adapteva’s Epiphany architecture[1]
for the Lattice Boltzmann algorithm. To the author’s knowledge, this has not been studied
before, although research involving this architecture is ongoing in other areas (e.g. [23]).
Being a manycore architecture, parallelization is the key to use the Epiphany efficiently
and as such, this work will mainly focus on scalability and performance.

To do the evaluation, the Lattice Boltzmann algorithm will be implemented on the Parallella
board, which currently serves as the reference implementation of the Epiphany architec-
ture and contains sixteen processor cores. This implementation will be used to simulate
the lid cavity test case in two and three dimensions. Code instrumentation and benchmark-
ing of different problem sizes will then be used to measure scalability and performance
of the algorithm. Through analysis of the results, performance problems and bottlenecks
will be identified and a conclusion will be drawn on whether the Epiphany architecture is
suitable for the Lattice Boltzmann algorithm or not.

However, a universal and highly optimized implementation of the Lattice Boltzmann al-
gorithm is outside the scope of this thesis and left for future study (see also chapter 6).

3

2 Background

In Computational Fluid Dynamics (CFD), problems from the domain of fluid mechanics
are solved numerically through simulation. In order to achieve sufficient accuracy of the
(approximate) solutions, good fluid models are necessary. This chapter provides a short
introduction to fluids in general and describes the test case used. Since this thesis focuses
on the Lattice Boltzmann and the Epiphany hardware architecture, they are described in
more detail afterwards.

2.1 Computational Fluid Dynamics

2.1.1 Fluids

"A fluid is defined as a substance that deforms continuously whilst acted upon by any
force tangential to the area on which it acts."[26] These forces are called shear forces, and
while solids do resist them (possibly after a slight, non-permanent deformation), fluids
will change their shape and not be able to reach a stable equilibrium. Fluids are further
divided into gases and liquids, with liquids usually having a much higher density and
being much less compressible than gases. Also, gases tend to spread, filling any available
volume, while liquids will form boundary layers to the surroundings instead.

Although a complete analysis of a fluid would have to account for each individual molecule,
in most engineering applications only the local and/or global averages for different proper-
ties like density or velocity are interesting. Two different approaches have been developed
to deal with this. In classical fluid mechanics, fluids are thus treated as a continuum and

4

the basic principles from mechanics (i.e. conservation of energy and matter, and Newton’s
laws of motion) are applied to them. On the other hand, approaches like the Lattice Boltz-
mann method treat fluids as statistical particle distributions, averaging the fluid behaviour
locally.

2.1.2 Test Case: lid cavity

As a result of the no-slip boundary condition, fluid nodes attached to a wall will always
move at the same speed as the wall itself. The lid cavity test case consists of a box
with zero-speed no-slip walls on all sides, except for a single wall, which moves at a
constant velocity. Initially, the fluid is of constant density and does not move at all.
Figure 2.1 shows the normalized absolute velocity of a simulation after 150 (left) and
1000 (right) time steps. Higher speeds are shown with higher intensity. It can be seen
that in the beginning, the moving top wall (moving to the right) drags the fluid nearby
along, increasing velocity. Since the fluid cannot pass the right wall, it starts to move
downwards and, over time, forms a circular stream. After some time has passed, a steady
state is reached.

Figure 2.1: Velocity field of a 104x104 2D lid cavity simulation,
at iterations 150 (left) and 1000 (right)

2.2 Lattice Boltzmann Method

Austrian physicist Ludwig Boltzmann is seen as one of the founders of statistical me-
chanics and developed a kinetic theory of gases in the late 19th century. Based on the

5

idea that ideal gases consist of many small particles, a statistical approach can be used to
predict the behaviour of a gas on a macroscopical scale by using the particle properties
on a microscopical scale. By taking particle probabilities into account instead of doing a
statistical analysis of all particles, he formulated the Boltzmann equation:

(
∂ f
∂ t

)
=

∂ f
∂ t

∣∣∣∣
collision

+
∂ f
∂ t

∣∣∣∣
force

+
∂ f
∂ t

∣∣∣∣
diffusion

(2.1)

in which f = f (~x,~v, t) describes the particle density function in the phase space1, and
depends on position~x, velocity~v and time t. While the collision and force terms account
for internal (particle-particle) and external forces, respectively, the diffusion term accounts
for the diffusion of particles, and can be formulated more explicit:

(
∂ f
∂ t

)
=

∂ f
∂ t

∣∣∣∣
collision

+
∂ f
∂ t

∣∣∣∣
force

+ξ ·
(

∂ f
∂~x

)
(2.2)

with ξ being the average (macroscopic) particle velocity. Defining ξ suitably and neglect-
ing external forces, this equation may be arranged differently:

(
∂ f
∂ t

)
+ξ ·

(
∂ f
∂~x

)
=

∂ f
∂ t

∣∣∣∣
collision

(2.3)

The collision term itself is a nonlinear integral differential equation and particularly hard
to solve [24]. The BGK2 collision operator, published in 1954, provides an approximation
for small Mach numbers [4] by introducing a single relaxation time τ and the equilibrium
distribution function f (0):

(
∂ f
∂ t

)
+ξ ·

(
∂ f
∂~x

)
=−1

τ

[
f − f (0)

]
(2.4)

1The phase space describes all possible states of a physical system. For every degree of freedom in a given
system, the corresponding phase space contains one dimension.

2Bhatnagar-Gross-Krook

6

The Lattice Boltzmann method obviously needs a lattice, which is defined by discretizing
the velocity space into a finite number of velocities ~ei, leading to a discretization in both
space and time:

(
∂ fi

∂ t

)
+~ei ·

(
∂ fi

∂~x

)
=−1

τ

[
fi − f (0)i

]
(2.5)

Approximating the equilibrium distribution function f (0)i can be done for non-thermal
fluids by doing a Taylor series expansion and choosing an appropriate lattice model[17],
providing the last missing element needed for simulation:

f (0)i = ρ ·wi ·
[

1+3 · (~ei ·u)+
9
2
· (~ei ·u)2 − 3

2
·u2
]

(2.6)

In each node, the macroscopic mass density ρ is calculated by summing all particle dis-
tributions fi, and the macroscopic velocity u is calculated by adding all particle densities
going in a specific direction, subtracting all particle densities going in the opposite direc-
tion, and normalizing the result by the mass density.

It should be noted that the right-hand side of equation 2.5 still denotes the BGK collision
operator, which is a relaxation towards a local equilibrium, while the left-hand side de-
scribes the streaming operator. Both operations need to be implemented independently
at least for solid boundaries [24]. The weighting factors wi depend on the chosen lattice
model (see chapter 2.2.1) and the velocity direction i.

It has been shown that the Navier-Stokes equations can be recovered from equations 2.5
and 2.6, given an appropriate lattice model and some other constraints (see e.g. [5]).

2.2.1 Lattice Models

The standard naming scheme for Lattice Boltzmann models is DmQn, in which m denotes
the number of dimensions and n denotes the number of discrete velocities in the model. As

7

representatives for a two- and a three-dimensional model, the D2Q9 and D3Q19 models
are shown in figures 2.2 and 2.3. Please keep in mind that the circles denote the directional
probability densities fi, not positions. Each of those structures represent a single lattice
cell, with the center point at index zero.

0 6

8

2

4

71

3 5

Figure 2.2: D2Q9 model

0 101

11

2

12

3

13

14

5

4

7

6

15

16

17

9

18

8

Figure 2.3: D3Q19 model

To be able to implement a Lattice Boltzmann algorithm, some lattice-specific values have
to be calculated, namely the discrete velocities ei and the weights wi. The former is given
in lattice units and is defined by a vector of size m for each of the n velocities, while the
latter are calculated from the momentums [4]. In equations 2.7, the solutions for the D2Q9
lattice are shown, and equations 2.8 show them for the D3Q19 lattice. Indices are chosen
so that i+ n−1

2 (for i = 1 . . . n−1
2) always refer to the opposite node, which simplifies the

implementation.

8

~ei,D2Q9 =

(0,0), i = 0,
(±1,0), i = 2,6,
(0,±1), i = 4,8,
(±1,±1), i = 1,3,5,7

~wi,D2Q9 =

4/9, i = 0,
1/9, i = 2,4,6,8
1/36, i = 1,3,5,7

(2.7)

~ei,D3Q19 =

(0,0,0) i = 0,
(±1,0,0) i = 1,10,
(0,±1,0) i = 2,11,
(0,0,±1) i = 3,12,
(±1,±1,0) i = 4,5,13,14,
(±1,0,±1) i = 6,7,15,16,
(0,±1,±1) i = 8,9,17,18

~wi,D3Q19 =

1/3, i = 0,
1/18, i = 1..3,10..12,
1/36, i = 4..9,13..18

(2.8)

2.2.2 Boundary Conditions

Boundary conditions describe the behaviour of a fluid at the boundary of a domain. Since
the results of the Chapman-Enskog expansion are only valid for the fluid nodes themselves
[10], the macroscopic values might not be correct for wall nodes.

The simplest boundary condition is the Full Bounce-Back boundary condition, in which
the microscopic particle densities leaving the domain get reflected back unchanged. In this
case, the boundary nodes are not considered part of the fluid, since the boundary is located
halfway between the boundary nodes and the adjacent fluid nodes. In macroscopic terms,

9

the boundary behaves as a no-slip, or zero-velocity, wall and is orientation-independent.

For the boundary nodes, only some of the particle densities are unknown, namely those
pointing into the domain from the outside. These densities can be calculated by solving
a lattice-dependent linear equation system, as shown in 1995 by Zou and He [12][28].
Although their results have been improved since then (cf. Ho et al [13]), they have been
chosen for this implementation because of their relative simplicity. The Zou/He boundary
nodes are considered a part of the fluid, and provide a suitable boundary for the lid cavity
problem.

2.3 Adapteva Epiphany

The hardware used in this thesis is the Parallella board, which is an open platform built
around the Adapteva Epiphany E16G3. Started in 2012 as a Kickstarter project, the de-
vices are now available from Adapteva and others [19].

2.3.1 Parallella Board

The Parallella board [20] is a fully open-source credit-card sized computer containing
a Xilinx Zynq 7010/7020, an Epiphany E16G3 and 1 GiB of RAM. The Xilinx Zynq
is a System-on-Chip (SoC) with two ARM Cortex-A9 processor cores and some recon-
figurable FPGA logic and is fully supported by Linux. The board also contains GBit-
Ethernet, USB and HDMI interfaces, can boot from a MicroSD card and is able to run
the Epiphany SDK. The E16G3 chip is a 16-core implementation of the Epiphany-III
architecture.

Adapteva’s e-Link interface is implemented using FPGA logic and is used to exchange
data between the ARM cores and the Epiphany. By default, a 32 MiB block of memory
is shared between both systems and starts at address 0x8e000000, which translates to
mesh coordinates between (35,32) and (36,0). On the Parallella board, the 4x4 grid of
processor nodes uses the coordinates between (32,8) and (35,11) inclusive.

10

To allow for daughter boards, four expansion connectors are provided, allowing access to
the power supplies, general I2C, UART, GPIO and JTAG interfaces as well as the northern
and southern eLink interfaces to the Epiphany chip.

2.3.2 Mesh Architecture

The architecture reference [1] defines the Epiphany architecture as "a multicore, scalable,
shared-memory, parallel computing fabric", consisting of "a 2D array of compute nodes
connected by a low-latency mesh network-on-chip". Although designed for good perfor-
mance in multiple application domains, low power usage is a key factor. At 800 MHz, the
E16G3 chip uses less than one watt [2].

This mesh operates in a single shared, flat 32-bit address space. All nodes use a continu-
ous 1 MiB large block of it, so that the first 12 bits of an address specify the node by row
and column, with the remaining 20 bits being local to that node. In theory, there can be at
most 4096 mesh nodes operating in a single 64x64 mesh.

bits 31..26 25..20 19..0
address row column local

Table 2.1: Mesh address structure

A system of that size would not be practical, however, since without available address
space, data exchange to other devices is hard. Also, the node address 0x000 is defined as
being the local node, which makes addressing that node from any other node impossible.
It is possible to have different types of nodes, although the current implementations only
use processor nodes.

The mesh itself consists of three meshes with different purposes (see figure 2.4). Read re-
quests travel through the rMesh, while cMesh and xMesh carry write transactions destined
for on-chip and off-chip nodes, respectively. To the application, off-chip traffic is indis-
tinguishable from on-chip traffic, apart from lower bandwidth and higher latency. Also,
writes are heavily favoured over reads, since reading a foreign address involves sending a
read request and waiting for the answer to arrive. Writes, on the other hand, are of a fire-

11

and-forget type, allowing the node to continue processing, while the data will eventually
reach its destination.

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

Mesh

Node

xMesh
rMesh

cMesh

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.4: Mesh network [1]

0x821

(32,33)

0x822

(32,34)

0x823

(32,35)

0x824

(32,36)

0x825

(32,37)

0x826

(32,38)

0x827

(32,39)

0x860

(33,32)

0x861

(33,33)

0x862

(33,34)

0x863

(33,35)

0x864

(33,36)

0x865

(33,37)

0x866

(33,38)

0x867

(33,39)

0x8A0

(34,32)

0x8A1

(34,33)

0x8A2

(34,34)

0x8A3

(34,35)

0x8A4

(34,36)

0x8A5

(34,37)

0x8A6

(34,38)

0x8A7

(34,39)

0x8E0

(35,32)

0x8E1

(35,33)

0x8E2

(35,34)

0x8E3

(35,35)

0x8E4

(35,36)

0x8E5

(35,37)

0x8E6

(35,38)

0x8E7

(35,39)

0x920

(36,32)

0x921

(36,33)

0x922

(36,34)

0x923

(36,35)

0x924

(36,36)

0x925

(36,37)

0x926

(36,38)

0x927

(36,39)

0x960

(37,32)

0x961

(37,33)

0x962

(37,34)

0x963

(37,35)

0x964

(37,36)

0x9A5

(37,37)

0x9A6

(37,38)

0x9A7

(37,39)

0x9A0

(38,32)

0x9A1

(38,33)

0x9A2

(38,34)

0x9A3

(38,35)

0x9A4

(38,36)

0x9A5

(38,37)

0x9A6

(38,38)

0x9A7

(38,39)

0x9E0

(39,32)

0x9E1

(39,33)

0x9E2

(39,34)

0x9E3

(39,35)

0x9E4

(39,36)

0x9E5

(39,37)

0x9E6

(39,38)

0x9E7

(39,39)

0x820

(32,32)

Figure 2.5: Routing example [1]

As a result of the employed weak memory-order model, the order of memory transac-
tions is not always deterministic, see table 2.2. If deterministic behaviour is necessary,
applications need to synchronize manually.

First Transaction Second Transaction Deterministic Order
Read from X Read from X Yes
Write to X Write to X Yes
Write to X Read from X No
Read from X Write to X Yes
Read from X Read from Y Yes
Read from X Write to Y Yes
Write to X Write to Y No
Write to X Read from Y No

Table 2.2: Weak memory-order model

Routing of traffic follows a few simple, static rules. At every hop, the router compares
its own address with the destination address. If the column addresses are not equal, the
packet gets immediately routed to the east or west; otherwise, if the row addresses are
not equal, the packet gets routed to the north or south; otherwise the packed gets routed

12

into the hub node, which then is the final destination. A read transaction consists of a
read request on the rMesh, and a write request on either the cMesh or xMesh. Figure 2.5
shows how a read transaction is routed through the mesh. The node at (32,32) sends a
read request to (39,39), which is routed along the yellow path until it reaches the target
node. The target node reads the data and sends the result back to the source of the original
request. Because both the row and the column addresses are different, the data will be
routed through a different path, shown in red.

When using the multicast feature of the mesh, a different routing algorithm is used instead.
In this case, the data is sent radially outwards from the transmitting node. All nodes
compare the destination address with a local multicast register and if both values are
equal (the node is listening to that traffic), it enters the node. This feature allows writing
to multiple nodes using a single transaction.

2.3.3 Processor Node

Currently, all implementations of the Epiphany mesh architecture only contain proces-

sor nodes. A processor node contains an eCore RISC CPU, 32 KiB of high-speed local
memory, a DMA controller, two event timers, and the obligatory mesh controller.

eCore

Every eCore is a superscalar 32-bit RISC CPU and contains two computational units
called Integer ALU (IALU) and Floating-Point Unit (FPU), a register file and a control
unit called Program Sequencer. Additionally, an interrupt controller and a debug unit are
part of each eCore.

The Program Sequencer handles control flow. It reads instructions from memory to keep
the 8-stage pipeline filled, handles jumps and calls and may issue up to two instructions in
a single clock cycle. If some restrictions on the code are followed, special zero-overhead
loops are also supported by using special loop hardware registers. The interrupt controller
may redirect the control flow if interrupts are enabled.

13

Priority Name in SDK Description
0 (high) SYNC Sync hardware signal asserted

1 SW_EXCEPTION Invalid instruction, alignment error or FP-exception
2 MEM_FAULT Memory protection fault
3 TIMER0_INT Timer 0 expired
4 TIMER1_INT Timer 1 expired
5 MESSAGE_INT Message interrupt
6 DMA0_INT DMA channel 0 finished
7 DMA1_INT DMA channel 1 finished
8 WAND Wired-AND signal asserted (not defined in SDK 5.13.07.10)

9 (low) USER_INT User interrupt

Table 2.3: Interrupts on Epiphany

Fast working storage is provided by the register file. As a RISC architecture, load/store
instructions are the only way to move data from or to the memory. All of the 64 registers
are 32-bit wide and can be used by both the IALU and the FPU. In every clock cycle, up
to nine operations are possible: 4 by the FPU (3 reads, 1 write), 3 by the IALU (2 reads,
1 write) and 2 by the memory interface (one 64-bit read or write).

While the IALU handles one 32-bit integer operation per clock cycle, the FPU executes
one floating-point instruction per clock cycle. Integer operations are addition, subtrac-
tion, shifts and bitwise operations, as well as data load/store, and these can be scheduled
anywhere without risking data-dependency stalls. Also, they are independent of floating-
point operations as long as there are no register-use conflicts. Supported floating-point
operations are addition, substraction, fused multiply-add, fused multiply-subtract, abso-
lute value, fixed-to-float and float-to-fixed conversions. All of these operate on up to three
single-precision operands (32-bit) and conform to IEEE754. The FPU does not support
any double-precision operations natively.

The interrupt controller is responsible for handling interrupts and supports nested inter-
rupts. All interrupts have a fixed priority and branch to addresses written in the Interrupt
Vector Table (IVT). The IVT is local to every core and is located at the beginning of lo-
cal memory. All interrupts can be masked independently and are listed in table 2.3. The
Wired-AND interrupt can be used to implement efficient barriers for synchronization.
However, the current SDK does not use this facility.

14

Memory

Current implementations of the Epiphany architecture contain 32 KiB of local memory
per node, which is divided into four banks of 8 KiB each. Each bank can transfer 64 bits
of data per clock cycle, independent of the other banks. There are also four users of local
memory: The Program Sequencer reads instructions to keep the core’s pipeline filled, the
register file and the DMA controller exchange data with the memory, and the network
interface may proxy request from the outside world as well.

By carefully distributing code and data among the banks, all four masters can access the
local memory simultaneously and, if using doubleword accesses, use the maximum local
bandwidth.

The Memory Protection Unit allows the application write-protect parts of local memory,
at half-page granularity. Attempts to write to protected memory will then raise a memory
protection fault interrupt.

DMA Controller

Every processor node contains a two-channel DMA controller running at the same clock
frequency as the CPU. Each channel can be used to copy data between the the local
memory and a remote node, or between two remote nodes. Additionally, a channel may
be put in a slave mode, in which data arriving in a specific register will automatically be
transferred to local memory. In this case, the receiving core decides the target address.

Two-dimensional transfers are possible by specifying inner and outer strides in a DMA
descriptor, and descriptors can be chained automatically, allowing complex patterns to be
transmitted without interrupting the CPU.

Both DMA channels are able to raise their interrupt after every handled descriptor. Also,
a remote DMA controller may finish a transfer by raising a local interrupt after the last
data item has arrived.

15

Event Timers

Using the event timers, it is possible to gather realtime data from every node. Each of the
two timers may be programmed to count a specific type of event, that is, different kinds
of clock cycles, instructions or stalls. The 32 bit counter register may be initialized with
any value and will, while the timer is enabled, count down every time the event occurs.
When the register reaches zero, the timer stops and an interrupt may be raised.

The Epiphany-IV architecture allows the timers to wrap around at zero and introduces
chaining, so that both 32-bit counters may be used as one 64-bit counter instead.

2.3.4 Programming

Adapteva released a Software Development Kit called eSDK [3], which is fully open
source. It provides a standard C programming environment based on the GNU toolchain
(gcc, binutils, gdb) and the newlib [22] and allows the execution of regular ANSI-C pro-
grams on each core.

Additionally, the Epiphany Hardware Utility Library (eLib) provides access to architec-
ture specific features, e.g. the DMA or interrupt controllers. Mutex and barrier functions
are available as well, simplifying the handling of multiple processors.

To allow the host to easily control the Epiphany, which is used as a co-processor, the
Epiphany Host Library (eHAL) is available. It provides outside access to the eCores, like
loading programs, starting, resetting and more. Also, it provides read and write access to
both the cores and the shared DRAM, if available.

On the host, all operating system functions are available, and any programming language
able to interface to C libraries may be used to control the Epiphany. The eCores them-
selves don’t run any operating system, but provide a "bare metal" standard C environment
for programming.

16

3 Implementation

To be able to evaluate the Epiphany architecture in the scope described earlier, the Lat-
tice Boltzmann algorithm has been implemented on the Parallella platform. While this
chapter describes the design and the data layouts, appendix A provides a more technical
explanation of the code, which also covers the build system used.

Central to the Lattice Boltzmann algorithm is the lattice of nodes, which contains the
simulation state of the fluid in the domain. The whole lattice is updated once per iteration
(that is, for each time-step), and the data required for e.g. visualization is comparatively
cheap to extract from the lattice, although some of the data show up when running the
algorithm as well. To simplify the implementation, the lattice itself is treated as both
input and output to each iteration.

The memory architecture of the Epiphany system presents some challenges, since both
the amount of local memory in each core as well as the external memory bandwidth are
very much limited. All communication to the host needs to go through shared memory,
which is external to the Epiphany system.

To avoid additional performance problems, the lattice is kept in local memory at all times
and only copied to shared memory when necessary1. However, doing so severely restricts
the achieveable lattice size.

Also, the numerical simulation accuracy will be limited, because the Epiphany architec-
ture currently only supports single-precision floating-point operations natively.

1Depending on the simulation requirements, not all iteration results might be relevant, but – apart from
benchmarking purposes – at least some will be.

17

The 32 KiB of local memory available to each eCore are divided into four independent
banks, of which the first bank differs slightly by containing the interrupt vector table and
startup code. According to Adapteva, code and data should be located in different banks
for optimal performance[1]. Following this recommendation, the code is put into the
first bank, leaving the remaining banks (24 KiB total) free for the block. Including any
libraries, the code size is restricted to slightly less than 8 KiB in this scheme.

To achieve parallelization, the lattice will be divided into blocks, where each block is
handled by a specific core. Thus, at a fixed block size, additional cores will not decrease
the iteration time, but extend the lattice size instead.

A DnQm lattice needs to store m floating-point values per node, which is 36 bytes in the
D2Q9 model or 76 bytes in the D3Q19 model if using single-precision variables. Each
block can only contain up to 682 D2Q9- or 323 D3Q19-nodes, and every core only holds
a single block.

All nodes in a block can be classified as bulk nodes, if all of their neighbors are in the
same block, or boundary nodes otherwise. Boundaries between blocks are called inner
boundaries, and only their nodes require communication to other Epiphany cores. Outer
boundaries define the edges of the simulation domain, and need special treatment (see
chapter 2.2.2).

Together, these restrictions allow a small, but still reasonable implementation of the Lat-
tice Boltzmann algorithm, while still providing relatively large lattices and adhering to
Adapteva’s guideline at the same time. Also, shared memory is only used to communi-
cate results to the host, minimizing the required external memory bandwidth.

Splitting a two-dimensional lattice spatially in blocks, and mapping those onto the two-
dimensional Epiphany mesh is straight-forward. In the three-dimensional case, both the
shape and the location of blocks relative to their neighbors can be varied. However, be-
cause of the limited number of nodes per block and the small number of cores, the lattice
will only be extended in two dimensions. Consequently, all inter-core communication
will be next-neighbor only2.

2Data destined for the host will still need to be routed through the mesh, though.

18

3.1 Data Layout

Each core contains a single block in local memory, which itself is a two- or three-dimensional
array of nodes. Each node is an array of 9 or 19 floating-point values (see also fig. 2.2
and 2.3). This block is located at the beginning of bank 1, at address 0x2000. Using
a fixed address simplifies accessing nodes in other blocks, which is required for the in-
ner boundaries. Generally, the indices used for coordinates are in reverse order, so that
iterating over all nodes in x,y,z-order touches consecutive memory addresses.

The shared memory only contains a single fixed-size data structure (shown in fig. 3.1),
which is used to exchange data between the Epiphany system and the host. Both the
timers and block fields are two-dimensional arrays, providing each active core with its
own external storage. The timers field is used for instrumentation only and usually con-
tains timer values for different phases of the algorithm. The number of instrumentation
entries (called TIMERS) is configurable, as are the number of nodes in a block (NODES)
and the number of active cores (CORES). These values are checked at compile- or link-
time, if possible.

Synchronization between the host and the Epiphany system is done through the pollflag

and iteration counter fields. Since all cores run in lockstep, synchronizing a single core
with the host is sufficient. Except for the pollflag field, which is used to synchronize to
the host, data is always pushed to shared memory, never read.

field name offset (bytes) size (bytes)
pollflag +0 4
padding +4 4
iteration counter +8 4
padding +12 4
timers +16 CORES * TIMERS * 4
padding (TIMERS % 2) * 4
block CORES * NODES * sizeof(node_t)

Figure 3.1: shared memory data structure
NODES, TIMERS and CORES are compile-time constants,
sizeof(node_t) equals 36 (D2Q9) or 76 (D3Q19) bytes

19

3.2 Algorithm

The functions collision and stream implement the main part of the algorithm and work
on single nodes. These correspond to the collision and diffusion terms in equation 2.1.
In a naive implementation, one needs two separate lattices, because when iterating over
all nodes, values needed in a later iteration will be overwritten. By employing the "swap
trick"[15] (swapping each value with its opposite in both steps) this is avoided. This mode
of operation will be called collision-streaming approach later.

Still, all nodes have to be touched twice per iteration. To save local memory bandwidth,
the optional bulk function combines both the collision and streaming steps of the algo-
rithm, accessing each node only once per iteration. However, this is not possible for
boundary nodes, which always use the collision and streaming functions. This mode of
operation is called boundary-bulk approach and benefits from larger block sizes.

Not all iteration results are required, depending on the simulation. If they are, each core
copies its block from local memory to shared (external) memory, from where the host can
access it. A flag in shared memory is used to synchronize communication between the
Epiphany cores and the host, and the barriers provided by the Epiphany SDK synchronize
all cores. All cores run in lockstep, sharing the iteration and current phase in processing.
After the last iteration has been done, the host is flagged and all cores go idle.

To ensure correctness of the algorithm, it has been implemented with the open-source
CFD solver Palabos[9] as reference.

3.3 Host Code

The host code runs on on the ARM cores inside the Linux operating system and controls
the Epiphany system. After starting the cores, the host busy-waits on the polling flag
in shared memory. Unfortunately, the Epiphany SDK currently does not provide a more
efficient way of monitoring the cores.

20

Each time the host is flagged, it copies the shared memory to a local variable and resets
the flag immediately afterwards, allowing the cores to continue with the next iteration.
Helper functions are available to write the normalized particle densities or velocities to
grayscale PNM image files, or dump the raw data into ASCII files. Additionally, it is
possible to automatically generate a GIF or MP4 animation from these images.

21

4 Results

In order to analyze the suitability of the Epiphany system, some experiments using the
Lattice Boltzmann implementation have been conducted and analyzed in detail.

Timing results were obtained by having test points in the Epiphany code, in which an
event timer is stopped, read, reset and restarted. Each test point incurs an overhead of
about 100 clock cycles, and since all experiments used only few (up to ten) test points per
iteration, the instrumentation influence of less than 1% was considered negligible.

Both the collision-streaming and the boundary-bulk approaches have been tested. Al-
though the former turns out to be slower in all cases, it carries out the calculation and
communication phases separately, providing more insight. However, this does not con-
cern the communication with the host, which is handled separately.

Each test was run for 1000 iterations, with test points after different iteration phases.
Each iteration was measured separately, generally resulting in very consistent behaviour
(usually less than 1% deviation). Diagrams show averages and – where applicable –
standard deviations. The very first iteration, which suffers from some startup delays, is
not averaged to avoid bias.

All experiments used the lid cavity test case and either the two-dimensional D2Q9 or
the three-dimensional D3Q19 lattices. The primary two-dimensional experiment used a
block size of 24x24 and all 16 cores, which were both successively varied. In three dimen-
sions, only two block sizes (3x35x3 and 7x6x7) were used. Additionally, the influence of
compiler optimization on code size and execution speed was investigated.

22

When starting the host program, all cores are reset and loaded sequentially with their
code from the host. They immediately start with their own initialization, until they run
into their very first barrier and wait there for all other cores to reach that point, too. As it
turns out (Fig. 4.1), loading cores1 with 8 KiB of code takes about 3.8 million (±126.000)
clock cycles, or about 90 ms at 700 MHz. The startup delay for the last core is only 390
clock cycles, providing an estimate for the minimal overhead of using a barrier.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

cl
oc

k
cy

cl
es

(a
vg

)/
m

ill
io

n

core (top left to bottom right)

Figure 4.1: Total accumulated startup delay, per core

4.1 Computation

The Lattice Boltzmann algorithm is designed to scale extremely well, which is also true
for the Epiphany implementation. Since parallelization is done in space by extending the
lattice, the number of nodes in the lattice increases linearly with the number of cores used
for the algorithm.

1using the e_load() function from the SDK

23

In the two-dimensional case, varying the number of cores has no effect on the collision
phase of the algorithm, while the performance of the streaming phase decreases slightly as
soon as multiple cores are involved (Fig. 4.2a). The boundary-bulk approach (Fig. 4.2b) is
about twice as fast as the naive approach, although the streaming step – for the boundary
only – is still slightly slower with multiple cores. Given the increased work done per
iteration, scalability of the algorithm on the Epiphany architecture is excellent.

0

50

100

150

200

250

1 4 9 16cl
oc

k
cy

cl
es

(a
vg

)/
10

00

active cores

Collision
Streaming

(a) collision-streaming

0

50

100

150

200

250

1 4 9 16cl
oc

k
cy

cl
es

(a
vg

)/
10

00

active cores

Boundary Collision
Bulk

Boundary Stream

(b) boundary-bulk

Figure 4.2: Calculation times (2D, block size 24x24)

For 3D simulations, two different block sizes were studied, but because of code size
limitations (see below), only collision-streaming results could be obtained. A block size
of 7x6x7 (315 nodes) approximates a cube and maximizes the number of bulk nodes,
while a block size of 3x35x3 (294 nodes) maximizes the number of boundary nodes within
the limits of hard- and software. Again, the collision times are independent of the number
of active cores, while the streaming step takes a small performance hit when going from
one to four cores, but stays constant afterwards (Fig. 4.3). Even in 3D, scalability on the
Epiphany architecture is excellent.

It also turns out that the time spent on computing the collisions time is independent of the
shape of the blocks (although a 7x6x7 block contains fewer nodes than a 3x35x3 block,
thus requiring less time to compute). On the other hand, the streaming step suffers less
with cubic blocks, since there is less boundary. It should be noted that the 3D lattice is
only extended in two dimensions, so all communication is strictly next-neighbor.

24

0

100

200

300

400

500

600

1 4 9 16

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

active cores

Collision, block size 3x35x3
Collision, block size 7x6x7

Streaming, block size 3x35x3
Streaming, block size 7x6x7

Figure 4.3: Calculation times (3D, varying block sizes)

The compiler optimization level influences both code size and performance. Especially
in the 3D cases, the 8 KiB code size limitation turned out to be challenging. Figure 4.4
shows the code sizes in bytes for different compiler settings and implementations. Rows
marked with bulk contain the additional code for the boundary-bulk approach, and rows
marked with nolibc have been compiled without the standard C library. Entries marked in
bold exceed the available code space.

Implementation -O0 -O1 -Os -O2 -O3
2D 10212 6348 6260 6268 7020
2D-bulk 10604 6548 6484 6492 7244
3D 44568 9244 9436 8892 9524
3D-nolibc 43088 7732 7548 7276 7960
3D-nolibc-bulk 43816 8060 7884 7596 8244

Figure 4.4: Code sizes in bytes, different optimization levels,
bold entries exceed the available 8 KiB code space

Figure 4.5 shows the influence of compiler optimization to the performance of the algo-
rithm in the collision-streaming implementation. Generally, higher optimization levels
result in slightly faster code, but do not produce huge performance increases – with a sin-
gle exception. Going from -O2 to -O3 is extremely beneficial to the 2D collision step,
where a 12% increase in code size results in a 2.4x speedup. However, this difference was
not investigated further.

25

0

100

200

300

400

500

600

700

-O1 -Os -O2 -O3

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

2D 24x24
3D 7x6x7
3D 3x35x3

(a) collision

0

100

200

300

400

500

600

700

-O1 -Os -O2 -O3

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

2D 24x24
3D 7x6x7
3D 3x35x3

(b) streaming

Figure 4.5: Compiler optimization level influence (collision-streaming)

Looking at the boundary-bulk approach (Fig. 4.6), the highest optimization level gained
large performance increases for the 2D simulations, with speedups of 1.9x for the bound-
ary and 3.4x for the bulk computations (2.9x total). However, due to code size limitations
(see above), no comparable results exist for the 3D simulations. Generally, the 3D im-
plementations only see a small performance improvement from this approach (11% for
7x6x7 blocks, and 3.5% for 3x35x3 blocks at the -O2 optimization level compared to
the collision-streaming approach). This bulk-based optimization is rendered somewhat
inefficient with the smaller block sizes and more involved boundary conditions compared
to the 2D case.

0

200

400

600

800

1000

-O1 -Os -O2 -O3

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

2D 24x24
3D 7x6x7
3D 3x35x3

(a) boundary

0

200

400

600

800

1000

-O1 -Os -O2 -O3

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

2D 24x24
3D 7x6x7
3D 3x35x3

(b) bulk

Figure 4.6: Compiler optimization level influence (boundary-bulk)

26

At 576 nodes per block (24x24) and optimization level -O3, the current implementation
needs about 164 000 clock cycles to do the two-dimensional collision steps, or about
285 clock cycles per node. These cycles are used to execute 135 IALU- and 73 FPU-
instructions in average, resulting in about 4300 collisions per second. Only 26% of all
clock cycles are used for FPU instructions (73% if counting all instructions). In theory,
perfect scheduling could at most quadruple the collision throughput2.

Maximum performance of the two-dimensional simulation has been achieved with the
boundary-bulk approach, resulting in about 2.8 MLU/s (millions of lattice node updates
per second) for a 24x24 block size on a single core. Together, all cores are able to achieve
45 MLU/s. According to [4], an AMD Opteron at 2.2 GHz reaches about 7 MLU/s using
a single thread, although with double precision.

In the D3Q19 models however, the per-core Epiphany performance drops down to about
0.34 MLU/s (boundary-bulk, 7x6x7 block size, -O2). If using all 16 cores, 5.4 MLU/s
can be obtained, which is about the single-core performance obtained in 2005[27]. In
contrast, an NVidia Tesla was shown to achieve up to 650 MLU/s in 2012[11] using the
same lattice model at single-precision accuracy.

It should be noted that all comparison results have been made with much larger lattices
and included memory bandwidth limitations, while the Epiphany results presented here
only used very small lattices stored in on-chip memory.

Since the collision times depend linearly on the number of nodes in each block, the num-
ber of iterations per second for a given lattice size can be increased at the cost of requiring
more cores. Reaching a 1000x1000 lattice already requires a 42x42 mesh of Epiphany
cores (see fig. 4.7), which would require a multi-chip solution and using the slower inter-
chip communication paths. To the author’s knowledge, no such configurations have been
studied yet.

2However, in that case, the iteration would be limited by the streaming phase.

27

block size collisions
per second

cores required
(1000x1000 lattice)

24x24 4300 42x42
12x12 17000 84x84
8x8 38000 125x125
6x6 64500 167x167

Figure 4.7: block size influence, ignoring multi-chip overhead, 700 MHz

4.2 Shared Memory Access

Except for benchmarking purposes, the results of a simulation are very much relevant as
well, often including the results of some or all intermediate steps. In the current imple-
mentation, the analysis of the results is left to the host application. To get the data to the
host, each core pushes its own block to shared memory, and the host application reads
the data from there. Since shared memory is external to the Epiphany (on the Parallella
board, it is actually a part of the host RAM), accessing it is very costly3.

Figure 4.8 puts the 2D calculation times in relation to the time needed to copy the data
to the host (called Memcpy in all figures). Copying a two-dimensional 96x96 lattice to
the host is about 18.5x slower than actually computing one iteration using the boundary-
bulk approach. However, this number goes down when comparing against the slower
three-dimensional computations.

The host needs to read the lattice from shared memory as well, which is about twice
as fast. In cases where not all iteration results are required, multiple buffers could be
kept in shared memory to hide this overhead completely. However, this approach breaks
down when data is in average produced faster than the host can consume (or store) it.
The limited size of local memory prevents similar optimizations in each core, though. In
any case, the current implementation does not take advantage of double-buffering. Also,
although the host reading time could be overlapped with the next iterations’ calculation
time, it is not done.

3Especially executing code from shared memory should be avoided at all costs. While developing, some
math routines accidentally ended up in shared memory, leading to a decreased speed of execution: The
attempt was cancelled after 25 minutes had passed without the first iteration finishing. After fixing the
problem, iterations took less than a second each.

28

0

500

1000

1500

2000

2500

3000

C
ol

lis
io

n

St
re

am
in

g

M
em

cp
y

H
os

tR
ea

d

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

(a) collision-streaming

0

500

1000

1500

2000

2500

3000

B
ul

k

B
ou

nd
ar

y

M
em

cp
y

H
os

tR
ea

d

cl
oc

k
cy

cl
es

(a
vg

)/
10

00
(b) boundary-bulk

Figure 4.8: Clock cycles per algorithm step (2D, 16 cores, 24x24 blocks)

When including this Memcpy time in the scalability graph, a total linear dependency
becomes obvious, as can be seen in Figure 4.9. This linearity is based on the fact that
additional cores increase the number of nodes, and thus the size of the lattice increases
linearly as well.

0

500

1000

1500

2000

2500

3000

1 4 9 16

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

active cores

Collision
Streaming

Memcpy

Figure 4.9: Algorithm scalability (2D, block size 24x24)

29

If the lattice size is kept constant when adding more cores, i.e. decreasing the block size,
the time spent copying the results to shared memory becomes constant as well (Fig. 4.9),
showing that the memory copy time only depends on size of the data.

0

50

100

150

200

250

300

1 4 9 16

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

active cores

Collision
Streaming

Memcpy

Figure 4.10: Algorithm scalability (2D, lattice size 24x24)

The time spent copying the fixed amount of data to shared memory differs quite a lot
between cores4. On the Parallella board, shared memory is logically located east of the
southernmost core (see also chapter 2.3.1), which is always among the first cores to finish
copying. However, the behaviour shown in Figure 4.11 has not been studied in more
detail, since the throughput is independent of the number of active cores.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

cl
oc

k
cy

cl
es

(a
vg

)/
10

00

cores (numbered top left to bottom right)

Memcpy

Figure 4.11: Shared memory copy time

4So far, the Memcpy times included the synchronization time as well, hiding these differences. However,
the times measured for each core show almost no variation and are consistent between runs.

30

Using the D2Q9 model, the 96x96 lattice contains 324 KiB, or 20736 bytes per 24x24
block. The measurements show that it takes about 2.6 millions of clock cycles to copy the
data to shared memory, which at 700 MHz thus exhibits a bandwidth of about 85 MiB/s
when using the memcpy-function supplied by the Epiphany SDK. A smaller function,
which copies each byte separately, is used in the three-dimensional cases and showed a
throughput of 38 MiB/s only.

According to Andreas Olofsson of Adapteva5, the maximum bandwidth is 600 MiB/s (at
600 MHz), or 200 MiB/s if not using the optimal access pattern, although the used FPGA
logic limits the obtainable bandwidth further.

Using the 324 KiB lattice as an example, the current implementation only allows trans-
mission of about 270 results per second to the host. Even though there is still room for
improvement, transmitting 1900 lattices per second even saturates the theoretical shared
memory bandwidth completely. However, since calculations happen in-place and double-
buffering in each core is infeasible, overlaying computation and transmission times is not
possible.

Also, since the available bandwidth is already used, it is not possible to store the lattice
externally, which would be the only way to increase lattice sizes beyond the limitation
imposed by local memory size.

5From a post in the Parallella forum written in march 2014, available at
http://forums.parallella.org/viewtopic.php?f=23&t=993&p=6302#p6319

31

5 Conclusion

The goal of the master thesis was to explore the efficiency of the Lattice Boltzmann al-
gorithm on Adapteva’s Epiphany platform. It has been shown that although the algorithm
scales extremely well, both performance and usability are limited by the memory system.

In this implementation, each core calculates the algorithm on a small part of the lattice
(block). Due to the scarce local memory, only tiny blocks can be stored in each core,
rendering some optimizations impossible or inefficient, especially when using more ad-
vanced lattice models. However, the computation throughput in the two-dimensional case
looks mildly promising.

Unfortunately, the limited external memory bandwidth makes storing even parts of the
lattice in the larger, shared memory infeasible, preventing lattice sizes beyond the local
memory size. Already at a few thousand nodes, the time needed to copy the lattice to
shared memory overshadows the computation times. Consequently, extending the lattice
size is only possible through increasing the number of cores. Since the number of pro-
cessing units per chip currently is limited, even moderate lattice sizes require a multi-chip
solution, which involves the slower inter-chip communication links.

Current generations of the Epiphany architecture do not have native double-precision
floating-point support, although this support is likely to appear in the future.

It can be concluded that the Epiphany architecture in its current state is not able to run
the Lattice Boltzmann algorithm efficiently unless the problem size is very small and only
few iteration results are required.

32

6 Future Work

The current implementation hard limits the code size per core to slightly less than 8 KiB
in order to maximize the number of nodes in local memory. Consequently, several trade-
offs were necessary to keep below that limit, especially in the 3D case. Given more room
for code space at the expense of block size, further optimizations are possible.

Functionally, the implementation uses older and simpler boundary conditions instead of
more accurate, but larger (in terms of code size) ones. Implementing the results of current
research (e.g. [13]) should provide improvements to the simulation results. Also, it might
be worth investigating the overhead of using double-precision calculations.

This work focused only on a single-chip Epiphany system. It is possible to both extend
the number of cores by adding more chips to form a single, larger Epiphany mesh, or to
use clustering techniques using multiple Parallella boards. Both approaches might be able
to alleviate some of the limitations encountered, although the bandwidth limitations will
provide challenges in getting the data in and out of the system efficiently.

The memory handling could be improved. Caching the inner boundaries and using the
DMA engines for communication might improve performance. Also, it should be possible
to – at least in part – overlap shared memory accesses with the calculation times to utilize
the Epiphany further. Further low-level code optimizations (e.g. inlining, loop unrolling)
might be beneficial as well. Since all of these examples require additional memory, they
will increase performance at the cost of reducing block size.

33

A Appendix

The two- and the three-dimensional implementations of the Lattice Boltzmann algorithm
are independent and although they are very similar in structure, they don’t share any code.
Each of those implementations contains two applications, one running on the host and one
running on all Epiphany cores.

The source code to both implementations is split into four parts each: The build system, a
shared header file, a host application and a single Epiphany application, which is run on
all cores simultaneously.

A.1 Build System

To build both the host and Epiphany applications together, a reasonably generic Makefile
is provided. The first part of it specifies important aspects of the building process, which
compilers to use, additional parameters for compilation and linking, as well as file and
folder names. Only these should need system-specific customization, while the remain-
der makes up the targets and rules supported.

Generally, variable names starting with the letters H and E concern the host system and
the Epiphany, respectively.

Five directory names are to be specified: HSRC, ESRC, HDEST, EDEST and DEST. These
specify the locations of source files and intermediate output files, split between host and
Epiphany code (which must not be shared between both architectures) as well as the final
target location, which is used for both.

34

Only a single host application can be built per project. It is constructed from all object
files specified in the HOBJS variable and named in HAPP. The object files themselves
refer to corresponding C files in the host source directory.

It is possible to build multiple Epiphany applications, which are named SREC-files in
EAPPS, but they may only consist of a single unique C source file each. Sharing code be-
tween multiple applications is possible by specifying additional object files in the ECOM-

MON variable, which are then linked into all Epiphany applications. This allows easy
integration of shared communication code into the unique kernels.

The Makefile contains the targets host, target, and all to build the host application, Epiphany
applications, or both. For convenience, the targets run (build all, then run host applica-
tion), clean (clean all intermediate and final output files), and help (show target list and
explanations) are also provided. If the environment is set up correctly (cf. [3]), executing
make run should be enough to get started.

A.2 Shared Header File

The file shared.h is the only file used by both the host and the Epiphany compiler, and
contains global configuration values and data structures. It is necessary that all data struc-
tures described in this file have the same in-memory data layout even across architectures,
so they should be marked with an explicit alignment.

Here, the number of cores to use (in two dimensions) is specified, as well as the number
of nodes stored in each core (in two or three dimensions). Additionally, the maximum
number of timing values used for measurements is given here.

Every node is stored as an array of 9 floating-point values for the D2Q9 lattice model, and
19 floating-point values for the D3Q19 model, called node_t, and combined into a two-
or three-dimensional array block_t.

35

The shared memory structure shm_t consists of a pollflag field, an iteration counter, an
array of timing measurements and an array of blocks. Both arrays reproduce the two-
dimensional structure of the Epiphany mesh, and each core only writes to their own en-
tries. Scalar entries are only written by a single, designated core.

A.3 Epiphany

Each Epiphany core only handles a part of the lattice, called a block, which is configurable
in size. Blocks may not be larger than the available memory in each core, and each
dimension has a minimum size of three. Where possible, the configuration values are
sanity-checked at compile or link time.

The functions init, collision, stream and bulk are implemented in d2q9.c or d3q19.c
and contain the algorithm itself. The API to those functions is defined in an accompanying
header file.

To provide sensible initial values to the algorithm, the init function initializes all nodes
at their equilibrium with a uniform density. Since memory management for the data
banks is handled manually, the values would come up undefined otherwise (they are not
implicitly zeroed). In real applications, the initial values should probably be read from
shared memory instead, leading to a larger start-up time.

Zou/He boundary conditions and the BGK operator are implemented in the collision func-
tion. The top boundary(y = 0 in 2D, or z = 0 in 3D) can be assigned a velocity vector.
All other boundaries implement no-slip walls with zero velocity, and corners are assigned
to one of the adjacent boundaries, to save code space. Particle probability densities are
swapped with their opposite directions. This step represents the particle-particle interac-
tions, and can also introduce external forces on the top boundary.

36

The stream function represents the diffusion of particles in space. Inner borders (between
blocks) are transparently extended in the xy-plane in 2D, or the xz-plane in 3D by using
the shared address space on the Epiphany. In this function, particle properties are again
swapped with their opposite directions. Doing these swaps allows running the algorithm
in-place, which saves 50% of the data size compared to a naive implementation.

Finally, the bulk function is a faster variant combining the functionality of both the collide

and stream functions, which only iterates through the block once[15]. To allow parallel
execution, all boundary nodes (including the inner boundaries) need to be processes sepa-
rately using the two functions described above. Consequently, this function does not need
special-casing of boundaries.

The main logic of a core is implemented in main.c, which ties everything together. Each
core contains a single block_t, which is manually allocated at the fixed address 0x2000.
Dummy variables of 8192 bytes each are put into each data bank to make the linker avoid
them. This simple solution has two side effects: The linker will complain loudly if the
code does not fit the first bank, and the SREC file will contain 24 KiB of unnecessary
zeros, which are filtered as part of the build process.

Also, each core puts exactly one single variable in shared memory (of type shm_t, so that
the address of it is known to the host. Since shared memory is shared among all cores,
each core only accesses its own part of the structure to avoid collisions; shared fields are
handled by the top-left core. The corresponding section is also filtered from the SREC
file when building to avoid overwriting shared memory when loading cores.

At startup, every core fetches its own coordinates and writes them into global variables,
which are used by the algorithm to differentiate inner from outer borders, initializes its
block, and runs a predefined number of simulation iterations. Barriers, as provided by
the Epiphany SDK, are used to synchronize all cores when needed, and time intervals are
measured and stored in a local array.

37

If the result is to be sent to the host, which does not necessarily happen after each iteration,
each core copies its block and timer values to shared memory, the top-left core writes the
iteration counter, sets the polling flag and waits until the host tells it to continue. Again,
barriers are used to synchronize. After all iterations are done, the host is again flagged,
and all cores go idle.

The more complicated algorithm in the 3D case results in larger code, which exceeds
the size of bank 0. Since the C library is not used, except for memcpy and memset, the
3D subproject does not link against it. The missing functions, as well as some symbols
required by the Epiphany startup code, are provided by an extra C file. As a consequence,
main should never return.

A.4 Host

The host program running on the Linux kernel on the ARM processor, is responsible for
handling the Epiphany system, as well as reading and interpreting the data produced by
the lattice Boltzmann algorithm.

After resetting and initializing the Epiphany system, opening a workgroup and allocating
(and initializing) some shared memory, all reserved cores are loaded with the same SREC
file. Since the current Epiphany SDK does not allow signalling the host from Epiphany
code, the host polls the first field of the shared memory structure for changes. If the
Epiphany signals being done, the host program does some cleanup and ends.

Otherwise, an shm_t-sized chunk of memory is copied from the shared memory into a
variable and the flag is immediately reset. While the Epiphany calculates the next time
step(s), the host program then handles the data it just received.

It is possible to write the normalized particle densities or velocities into grayscaled PNM
image files, or to write the raw data and timer values into ASCII text files, depending on
the use case. Also, the generated images may be converted to a GIF animation of MP4
video file using external applications (ImageMagick[14] or ffmpeg[8], respectively).

38

B References

[1] Adapteva. Epiphany Architecture Reference. http://adapteva.com/docs/
epiphany_arch_ref.pdf, 2014. Rev 14.03.11.

[2] Adapteva. Epiphany E16G3 Datasheet. http://adapteva.com/docs/

e16g301_datasheet.pdf, 2014. Rev 14.03.11.

[3] Adapteva. Epiphany SDK Reference. http://adapteva.com/docs/

epiphany_sdk_ref.pdf, 2014. Rev. 5.13.09.10.

[4] Alexander Dreweke. Implementation and Optimization of the Lattice Boltz-
mann Method for the Jackal DSM System. Bachelor thesis, Friedrich-Alexander-
Universität, Erlangen-Nürnberg, 2005.

[5] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annual review

of fluid mechanics, 30(1):329–364, 1998.

[6] Clay Mathematics Institute. Millennium Problems. http://www.claymath.

org/millennium-problems.

[7] G. Crimi, F. Mantovani, M. Pivanti, S. F. Schifano, and R. Tripiccione. Early experi-
ence on porting and running a lattice boltzmann code on the xeon-phi co-processor.
Procedia Computer Science, 18:551–560, 2013.

[8] FFmpeg. FFmpeg. http://www.ffmpeg.org/.

[9] FlowKit.com. Palabos Home. http://www.palabos.org/.

39

[10] FlowKit.com. Palabos LBM Wiki » models:bc. http://wiki.palabos.org/
models:bc.

[11] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein. Performance engi-
neering for the lattice Boltzmann method on GPGPUs: Architectural requirements
and performance results. Computers & Fluids, 80:276–282, 2013.

[12] X. He and Q. Zou. Analysis and boundary condition of the lattice Boltzmann BGK
model with two velocity components. arXiv preprint comp-gas/9507002, 1995.

[13] C.-F. Ho, C. Chang, K.-H. Lin, and C.-A. Lin. Consistent boundary conditions for
2D and 3D lattice Boltzmann simulations. Computer Modeling in Engineering and

Sciences (CMES), 44(2):137, 2009.

[14] ImageMagick Studio LLC. ImageMagick: Convert, Edit, Or Compose Bitmap Im-
ages. http://www.imagemagick.org/.

[15] J. Latt. Technical report: How to implement your DdQq dynamics with only q
variables per node (instead of 2q). Technical report, Tufts University, 2007.

[16] W. Li, X. Wei, and A. Kaufman. Implementing lattice Boltzmann computation on
graphics hardware. The Visual Computer, 19(7-8):444–456, 2003.

[17] R. Mei, W. Shyy, D. Yu, and L.-S. Luo. Lattice Boltzmann method for 3-D flows
with curved boundary. Journal of Computational Physics, 161(2):680–699, 2000.

[18] K.-i. Nomura, S. W. de Leeuw, R. K. Kalia, A. Nakano, L. Peng, R. Seymour,
L. Yang, and P. Vashishta. Parallel lattice boltzmann flow simulation on a lowcost
playstation 3 cluster. International Journal of Computer Science, 2008.

[19] Parallella. Parallella | Supercomputing for Everyone. http://www.

parallella.org.

[20] Parallella. Parallella Reference Manual. http://www.parallella.org/

docs/parallella_manual.pdf. Rev. 13.11.25, preliminary.

40

[21] L. Peng, K.-i. Nomura, T. Oyakawa, R. K. Kalia, A. Nakano, and P. Vashishta.
Parallel lattice Boltzmann flow simulation on emerging multi-core platforms. In
Euro-Par 2008–Parallel Processing, pages 763–777. Springer, 2008.

[22] Red Hat. The Newlib Homepage. http://sourceware.org/newlib/.

[23] S. Savas, E. Gebrewahid, Z. Ul-Abdin, T. Nordström, and M. Yang. An Evaluation
of Code Generation of Dataflow Languages on Manycore Architectures. In Pro-

ceedings of the 20th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, Aug. 2014.

[24] M. Sukop. Lattice Boltzmann modeling an introduction for geoscientists and engi-

neers. Springer, Berlin New York, 2006.

[25] J. Tölke. Implementation of a Lattice Boltzmann kernel using the Compute Uni-
fied Device Architecture developed by nVIDIA. Computing and Visualization in

Science, 13(1):29–39, 2010.

[26] J. Ward-Smith. Mechanics of Fluids, Eighth Edition. CRC Press, 2005.

[27] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single processor performance
of simple lattice Boltzmann kernels. Computers & Fluids, 35(8):910–919, 2006.

[28] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Physics of Fluids (1994-present), 9(6):1591–1598, 1997.

41

